Hauser's Algebraic Surface Gallery
Reproductions in 3D of Herwig Hauser's fine raytraced surfaces, using real numerical cellular decomposition implemented in Bertini_real
- Regarding how I printed these models, I have some advice here.
- Click on the pictures to find out more about the surfaces.
- Non-clickable pictures still need me to write a description for them. These are indicated with a ° next to the name of the surface.
Dromedar °
\( x^4-3x^2+y^2+z^3 \)
Zeppelin °
\( xyz+yz+2z^5 \)
Zweiloch °
\( x^3y+xz^3+y^3z + z^3+7z^2+5z \)
Michelangelo °
\( x^2+y^4+y^3z^2 \)
Stern °
\( 400(x^2y^2+y^2z^2 +x^2z^2) + (x^2+y^2+z^2 -1)^3 \)
Mobius °
equation not given
Sphare °
\( x^2+y^2+z^2=1 \)
Limao °
\( x^2-y^3z^3 \)
Torus °
\( (x^2+y^2\)
\( +z^2+R^2-r^2)^2 \)
\( = R^2(x^2+y^2) \)
Whitney °
\( x^2-y^2z \)
Buggle °
\( x^4y^2+y^4x^2-x^2y^2 + z^6 \)
Zylinder °
\( y^2+z^2=1 \)
Diabolo °
\( x^2=(y^2+z^2)^2 \)
Dullo °
\( (x^2+y^2+z^2)^2\)
\( -(x^2+y^2) \)
Miau °
\( x^2yz+x^2z^2\)
\( +2y^3z+3y^3 \)
Trichter °
\( x^2+z^3 \)
\( = y^2z^2 \)
Crixxi °
\( (y^2+z^2-1)^2 \)
\(+ (x^2+y^2-1)^3 \)
Berg °
\( x^2+y^2z^2 + z^3 \)
Gupf °
\( x^2+y^2+z \)
Kegel °
\( x^2+y^2-z^2 \)
© I own the copyright to all of these images.
I have posted * low-res thumbnails on the main page, and medium quality copies without watermark on the focused pages, as a service to the mathematical and broader community. I retain all originals -- if you would like to use an original for a publication, please email me.